Aiaa 99-3301-cp an Elasticity-based Mesh Scheme Applied to the Computation of Unsteady Three-dimensional Spoiler and Aeroelastic Problems
نویسنده
چکیده
This paper presents a modification of the spring analogy scheme which uses axial linear spring stiffness with selective spring stiffeningkelaxation. An alternate approach to solving the geometric conservation law is taken which eliminates the need for storage of metric Jacobians at previous time steps. Efficiency and verification are illustrated with several unsteady 2-D airfoil Euler computations. The method is next applied to the computation of the turbulent flow about a 2-D airfoil and wing with two and threedimensional moving spoiler surfaces, and the results compared with Benchmark Active Controls Technology (BACT) experimental data. The aeroelastic response at low dynamic pressure of an airfoil to a single large scale oscillation of a spoiler surface is computed. This study confirms that it is possible to achieve accurate solutions with a very large time step for aeroelastic problems using the fluid solver and aeroelastic integrator as discussed in this paper.
منابع مشابه
Helicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight
An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...
متن کاملON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کاملDevelopment of a Discrete-time Aerodynamic Model for Cfd- Based Aeroelastic Analysis
System identification is used to develop an accurate and computationally efficient discrete-time aerodynamic model of a three-dimensional, unsteady CFD solution. This aerodynamic model is then used in place of the unsteady CFD solution in a coupled aeroelastic analysis resulting in a substantial savings in computational time. The methodology has the advantage of producing an explicit mathematic...
متن کاملModeling for Rotor Aeroelastic Analysis
Title of Dissertation: CFD Based Unsteady Aerodynamic Modeling for Rotor Aeroelastic Analysis Jayanarayanan Sitaraman, Doctor of Philosophy, 2003 Dissertation directed by: Associate Professor James D. Baeder Department of Aerospace Engineering A Computational Fluid Dynamics (CFD) analysis is developed for 3-D rotor unsteady aerodynamic load prediction. It is then coupled to a rotor structural a...
متن کاملA robust engineering approach for wind turbine blade profile aeroelastic computation
Wind turbines are important devices that extract clean energy from wind flow. The efficiency of wind turbines should be examined under various working conditions in order to estimate off-design performance. Numerous aerodynamic and structural research works have been carried out to compute aeroelastic effects on wind turbines. Most of them suffer from either the simplicity of the modelling ...
متن کامل